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Where Have We Been?!

Flight Agency  Entry Date Destination V  Resul t  
    (km/s) (deg)  

       

Venera 3 USSR Mar. 1966 Venus ~11 0 Comm. 
Failure 

Venera 4 USSR Oct. 1967 Venus ~11 0 Success 
Apollo 4 NASA Nov. 1967 Earth 10.7 25 Success 
Mars 2 USSR Nov. 1971 Mars ~6 0 Failure 

Viking I & 2 NASA Jul/Sep. 1976 Mars 4.5 11 Success 
Pioneer Venus 

(4 probes) NASA Dec. 1978 Venus 11.5 0 Success 

Vega 1 & 2 USSR Jun. 1985 Venus 11.5 0 Success 
Galileo NASA Dec. 1995 Jupiter 47.4 0 Success 

Pathfinder NASA Jul. 1997 Mars 7.5 0 Success 

MPL NASA Dec. 1999 Mars  0 Rocket  
Failure 

DS-2 NASA Dec. 1999 Mars 6.9 0 Failure 
Beagle ESA Dec. 2003 Mars 5.4 0 Failure 
MER-A NASA Jan. 2004 Mars 5.6 0 Success 
MER-B NASA Jan. 2004 Mars 5.6 0 Success 

Genesis NASA Sep. 2004 Earth 11 0 Parachute 
Failure 

Huygens ESA Jan. 2005 Titan 6.5 0 Success 
Stardust NASA Jan. 2006 Earth 12.6 0 Success 

 ♦  9 other successful Venus entries"
♦  5 other failed Mars entries"

♦  "

♦  "
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Where Are We Going?!

Ø Active Mars Exploration Program 
• Launch opportunities every two years 
• Scheduled: Phoenix (2007), MSL (2009), Scout AO (2011) 

Ø Solar System Exploration (Decadal Survey) 
• Jupiter Polar Probes 
• Neptune Probes 
• Return to Venus 
• Lunar/Comet/Asteroid Sample Return 
• Titan Exploration (rovers, balloons, airplanes) 
• Saturn Probes? 

Ø Vision for Space Exploration 
• Return to the Moon (CEV), eventually to Mars 
• Emphasis on technology demonstration, human precursor missions 

Ø Aerocapture as a Propulsion Alternative 
• Use aerodynamic deceleration in lieu of propellant to capture into orbit 
• Significant mass savings are possible for many destinations 
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Why is Aerothermal Modeling Important?!

Can’t we just ‘cover up’ uncertainties in aerothermal 
modeling with increased TPS margins? 

Ø Sometimes, but: 
•  Margin increases mass; ripple effect throughout system 
•  Without a good understanding of the environment risk cannot be quantified; benefits 

of TPS margin cannot be traded with other risk reduction strategies 
•  Margin cannot retire risk of exceeding performance limits 
•  For some missions (i.e. Neptune aerocapture, Jupiter polar probe), improved 

aerothermal models may be enabling 

Ø  Heat flux (with pressure & shear) used to select TPS material 
Ø  Heat load determines TPS thickness 

Can’t we retire all uncertainties via testing? 
Ø No!: 

•  No ground test can simultaneously reproduce all aspects of the flight environment. 
A good understanding of the underlying physics is required to trace ground test 
results to flight. 

•  Flight testing too expensive for anything other than final model validation 
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CFD Process for Planetary Probe Design!

Ø Advances in parallel computing, efficient implicit 
algorithms have enabled rapid turnaround capability 
for complex geometries	



• Full three dimensional CFD is an integral part of all planetary 
probe TPS design	



Ø Modeling gaps are physics driven; mission specific	


• Physical models employed are by and large based on 20-30 year 

old methodologies	



Genesis Penetration Analysis!

Nozzle flow CFD 
simulation 

Model CFD 
simulation 

Arc jet test 

Inlet 
conditions 

Test model 

Arc Jet Model Simulation!

Mars Phoenix Umbilical Cavity!
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Aerothermal Modeling Needs!

Ø Reacting Flow Physics 
Ø Radiative Heating 
Ø Transition and Turbulence 
Ø Coupling Effects 
Ø Afterbody Heating 
Ø Unsteady Separated Flows 
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Ü  Models are required for all of these processes to accurately predict net 
heat transfer	



Ø Chemical Kinetics and Thermal 
Nonequilibrium Models 

– developed for Earth entries; applied other 
destinations with minimal validation 

– developed for low ionization levels; 
applicability for fast entries (e.g. 
giant planets) not well known  

Ø Surface Kinetics 
– catalysis and surface recession 

have a huge effect on heat transfer 
– validated models for non-Earth 

entries do not exist; bounding (possibly 
very conservative) models are employed 

Mars Science Laboratory -	


Impact of Catalysis Model on Heating	



Centerline Heating -	


Fully Turbulent	



V!
Stag Pt."

Reacting Gas Flow Physics!
Current Status and Identified Gaps!



June 29 2006 

NASA Ames Research Center! Reacting Flow Environments Branch!

MJW - 8 

Turbulent Heating and Transition!
Status and Remaining Gaps!

Laminar! Turbulent!

Mars Science Laboratory!
Peak Heating Condition!

CFD Comparison to T5 Test!

Ø Leeside turbulent heating recently identified 
as an issue for lifting blunt cones 

• current uncertainty > 50%, poorly defined 

Ø Other turbulence mechanisms become 
important for mid to high L/D geometries 

Ø Blowing/roughness dominated transition 
will be crucial for ablative TPS systems  

• models are configuration/material dependent 
• existing models require validation 

 
Ü Turbulent heating remains a design 

driver for large entry systems 
• No flight validation for non-Earth entries 

Stagnation Point!

windside! leeside!

V!

Transition in 
LaRC Mach 6 Tunnel!
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Radiative Heating!
Status and Remaining Gaps!

Ø Radiative heating predictions have the highest 
uncertainties of all heating modes 

• analysis predicts that radiation will dominate aeroheating for 
Titan, outer planets, and large vehicles at Venus & Mars 

• radiation can be strongly coupled to flowfield 
• detailed models exist only for Earth 

Ø Huygens entry spurred interest in Titan radiation 
• several models in literature; Titan probably better understood 
than all solar system targets other than Earth 

• additional work is required to reduce remaining uncertainties 

Ø Shock tube data used to improve existing models 
• recent testing performed for Titan (ISP, 2004), Mars (ISP, 2006), 
and Earth (CEV, 2006) 

• results for planetary bodies to be discussed at workshop in Sep. 

Ø No non-Earth flight data exist 
• Huygens carried no heatshield instrumentation 
• Galileo, PV data insufficient to determine radiative heating levels 

CN Radiation Model 
Validation!

Ü Collisional-radiative models are required for all 
planets 

Sample EAST Dataset!
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Final Model Validation: 
Flight Data and Recovered Hardware!

Genesis Heatshield	



MER-B Heatshield	



Ø Instrumenting science missions is the best way to 
obtain model validation data for follow on probes!

• Recent trend away from heat shield instrumentation must be 
reversed; next opportunity is MSL (2009)"

Ø In flight observation (e.g. Stardust) can be valuable, but 
only possible at Earth!

Ø Post-flight hardware inspection can be useful for model 
deficiency identification (e.g. Apollo coking)!

• Hardware recovery can be difficult to impossible"
• Cannot give temporal information"

Stardust Capsule	



Stardust Airborne Observation!
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Conclusions and Recommendations	



Ø Most of our aerothermal models were developed for Earth and applied 
to other destinations with minimal validation 

Ø Challenging destinations include all gas giants, Venus and large 
payloads at Mars 

Ø Three major priorities show up across multiple destinations 
•  Shock layer radiation, including coupling effects 
•  Turbulent heating and transition 
•  Gas-surface interaction, including catalysis 

Ø Improvements to aerothermal models will have a significant payoff in 
terms of entry risk quantification and system mass savings 
•  Better understanding of entry risks will enable more informed system trades 
•  Aerothermal model improvements may enable a new generation of ambitious 

science missions 

Ø Flight data are required to validate models for non-Earth entries 
•  Much can be gained by instrumenting science missions 
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Backup	
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Afterbody Heating!
Status and Remaining Gaps!

Ø Current uncertainty levels assumed 50-300% 
• Impacts backshell TPS selection and mass 

Ø Physics drivers include turbulence, unsteadiness, 
rarefaction, and RCS interaction effects 

Ø Limited validation with flight data for Earth (Apollo) 
and Mars (Venus) entries 

• Good agreement with Earth data, CFD significantly 
underpredicts Viking heating 

 

Ü More work required for the range of entry missions 
• non-Earth destinations 
• open backshells (fluid-payload interactions) 

DES Simulation of Titan Wake 

AS-202 Backshell Oilflow 

Viking Aftshell Heating Prediction 
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Flowfield/Radiation/Ablation Coupling!
Status and Identified Gaps!

Ø Coupling can have a major impact on 
net heating and ablation rates 

Ø  Loosely coupled radiation 
methodology has been demonstrated 

• Stardust design, Fire-II post-flight analysis 
• Intractable for strongly coupled flows (outer 

planets, Venus) 

Ø Ablation coupling models under 
development 

• Ablation product blockage of radiation is not well 
characterized 

• Required rates are material and environment 
dependent; most not known 

Titan Aerocapture Radiative Heating 

Ü For this type of environment, coupled solutions 
are required to obtain reasonable aeroheating 
predictions and to make informed TPS 
decisions 


